
J
H
E
P
0
4
(
2
0
0
6
)
0
0
1

Published by Institute of Physics Publishing for SISSA

Received: February 16, 2006

Accepted: March 21, 2006

Published: April 3, 2006

Non-Kähler attracting manifolds

Gianguido Dall’Agata

Physics Department, Theory Unit, CERN

CH 1211, Geneva 23, Switzerland

E-mail: Gianguido.Dall’agata@cern.ch

Abstract: We observe that the new attractor mechanism describing IIB flux vacua for

Calabi-Yau compactifications has a possible extension to the landscape of non-Kähler vacua

that emerge in heterotic compactifications with fluxes. We focus on the effective theo-

ries coming from compactifications on generalized half-flat manifolds, showing that the

Minkowski “attractor points” for 3-form fluxes are special-hermitian manifolds.

Keywords: Flux compactifications, Superstring Vacua, Superstrings and Heterotic

Strings.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep042006001/jhep042006001.pdf

mailto:Gianguido.Dall'agata@cern.ch
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
6
)
0
0
1

Contents

1. Introduction 1

2. Preliminaries 4

3. Heterotic attractors 7

3.1 One Kähler modulus 8

3.2 General case 10

4. Type II non-Kähler attractors 12

1. Introduction

The black hole attractor mechanism [1, 2] is a translation of the no-hair theorem into

algebraic equations that specify the values of the moduli at the horizon, in terms of the

black hole mass and charges. These, in turn, specify the area of the horizon and hence the

black hole entropy S. For extremal black holes, the latter is controlled by the extrema of

a potential VBH depending on the black hole central charges ZIJ : S = πVBH |hor [3]. In

N = 2 supergravity, thanks to the special-Kähler structure of the vector-multiplets moduli

space, the central charge Z is covariantly holomorphic (D̄ı̄Z =
(
∂̄ı̄ −

1
2Kı̄

)
Z = 0) and the

black hole potential is [4, 5]

VBH = |Z|2 + |DiZ|2. (1.1)

The supersymmetric configurations are then specified by the minimization condition

DiZ =

(
∂i +

1

2
Ki

)
Z = 0 (1.2)

of the central charge, the latter being given by the invariant constructed from the symplectic

vector of charges Q = (pΛ, qΛ) and the symplectic sections of the moduli space V =

(LΛ,MΛ) [6]

Z = 〈Q,V〉 = qΛLΛ − pΛMΛ. (1.3)

The supersymmetric attractor equation is the algebraic translation of (1.2) [1, 7, 4]:

Q = 2Re(−iV̄Z). (1.4)

The asymptotically flat 4-dimensional N = 2 black holes arise from string theory com-

pactifications on Calabi-Yau manifolds in the presence of non-trivial 5-form fluxes on the

internal 3-cycles. At the horizon, the 10-dimensional space is the product AdS2×S2×CYpq,
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and the attractor equation can be understood as the expansion of the integral 5-form fluxes

in terms of the holomorphic cycles of the 3-form cohomology [5, 8]

F5 = 2Re(ZΩ̂) ∧ ωS2, (1.5)

where ωS2 is the volume form for S2, and Ω̂ is the normalized holomorphic form of CYpq,

which is an “attractive variety” [8]. The same central charge Z can be expressed in terms

of the Calabi-Yau data as the integral of the fluxes

Z =

∫

CY ×S2

F5 ∧ Ω̂. (1.6)

This form of the attractor equations has a striking similarity with the equations that

specify the vacua of IIB string theory Calabi-Yau compactifications to 4 dimensions, in the

presence of 3-form fluxes and O3/O7-planes. The superpotential of the effective N = 1

theory is a holomorphic function of the complex-structure moduli

W =

∫

CY
G ∧ Ω(zi), (1.7)

where Ω is the holomorphic form and G = FRR−τHNS is the complex 3-form flux, depend-

ing on the axion/dilaton τ and constructed from the Ramond-Ramond 3-form FRR and the

Neveu-Schwarz one HNS. From the superpotential one can define the quantity Z = eK/2W ,

which is covariantly holomorphic and whose explicit form is the same as (1.3), but with

the flux charges (pΛ, qΛ) also depending on τ , e.g. qΛ = qRR − τqNS. The supersymmetric

critical points are then given by

DiZ =

(
∂i +

1

2
Ki

)
Z = eK/2 (∂i + Ki)W = eK/2DiW = 0, (1.8)

which has the same form as (1.2). Also, the full potential of the effective theory can be

expressed in terms of Z as

V = |DiZ|2 − 3|Z|2. (1.9)

These similarities have recently led to the discovery of the “new attractor” equations by

Kallosh [9, 10], using the special-Kähler structure of the moduli space inherited from the

Calabi-Yau.

The new algebraic attractor equations can be expressed as a constraint coming from

the reality of the fluxes, once the setup is uplifted to F-theory, in analogy with the black

hole (1.5). In this case the RR and NS 3-form fluxes merge in a real 4-form flux F4, which

has a non-trivial expectation value on a Calabi-Yau 4-fold Y8. The expansion of this 4-form

is now performed with respect to the basis of 4-forms on Y8 [10]:

F4 = 2Re
[
Z̄Ω̂4 − D̄ĀZ̄DAΩ̂4 + D̄τ Ī Z̄DτI Ω̂4

]
, (1.10)

where A = {τ, I}. This expression is valid at any point in moduli space. The attractor

conditions are obtained by plugging the stationary-point conditions DV = 0 in (1.10).

For instance, the supersymmetric vacua are obtained by substituting DAZ = 0 in (1.10),
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while the non-supersymmetric ones are obtained by using 2DiZ Z̄ = DiDjZ gj̄D̄̄Z̄ (see

also [11]). Once again, we can rewrite this equation in an algebraic relation for the sym-

plectic vector of the flux charges Q = (pΛ
NS, q

NS
Λ , pΛ

RR, qRR
Λ ), now doubled because of the

appearance of the axion/dilaton τ [10]:

Q =

(
2Re(ZV̄)

2Re(Zτ̄ V̄)

)
+

(
2Re(Z̄0IDIV)

2Re(Z̄0I τ̄DIV)

)
, (1.11)

where Z0I = D0IZ. These equations not only describe both supersymmetric and non-

supersymmetric attractors, but they can also describe Minkowski vacua for which Z =

0 [10]. These points cannot be obtained by the black hole attractor equations (1.4), because

Z = 0 would mean a singular solution, with zero area of the horizon.

In the following we try to extend this new attractor mechanism to string theory com-

pactifications on non-Kähler manifolds in the presence of fluxes. Despite most of the

literature on the lanscape of flux vacua considers only the IIB case on Calabi-Yau’s, it is

known that there is a huge part of this landscape that involves compactifications on non-

Kähler manifolds. This is actually the generic case that arises when considering the flux

back-reaction. This type of solutions, first found in [12] for the common sector of string

theory, also appear in type II when more general fluxes are considered. It is also clear that

T-duality transformations of backgrounds with fluxes give rise to new backgrounds that

involve geometric deformations leading to non-Kähler manifolds [13, 14]; the corresponding

effective theories show an interesting dependence of the potential on the size moduli, in

addition to the complex-structure moduli dependence of ordinary Calabi-Yau reductions.

The drawback of considering such compactifications is the lack of a good description of

the moduli space. However, an important step forward was done in [15], where the authors

showed that, for a generic SU(3) structure manifold, the moduli space of the effective theory

is still described by a special-Kähler manifold. Using this result, we can work by analogy

with [9, 10] to extend the new attractor equations. We will argue that the conditions for

critical points of the potential can be expressed once more as a relation between a charge

vector Q (now including the ordinary flux charges and the geometric deformations, from

now on named “geometric fluxes”), the covariantly holomorphic superpotential (or central

charge) Z = eK/2W , and the symplectic sections of the moduli space V. The covariantly

holomorphic superpotential can still be described as a symplectic product

Z = 〈Q,V〉, (1.12)

where the charges Q are now collected in a matrix, which is a double symplectic vector with

respect to the complex structure and Kähler deformations, and V collects the symplectic

sections of both parts of the moduli space. The attractor equations can then be obtained

using the reality of Q (or of the corresponding fluxes, both the ordinary ones and the

geometric ones) and their expansion in terms of the basis of forms related to the light

degrees of freedom of the effective theory. For the common sector of string theory this

reads
Q = −2Im

(
ZV + gαβ̄ e−

bJc ⊗ DαΩ̂ Dβ̄Z + gī Die
− bJc ⊗ Ω̂ D̄Z

+gαβ̄gī Die
− bJc ⊗ DαΩ̂ D̄Dβ̄Z

)
,

(1.13)
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where the greek and latin indices label the complex structure and Kähler moduli respec-

tively. Also here, as for the IIB case, this expansion is valid at any point in moduli space,

but it becomes a non-trivial equation on the moduli/charges if one uses the condition that

the potential (1.9) is minimized DV = 0 (using DZ = 0 for supersymmetric vacua).

The plan of the paper is the following. As a first step, in section 2 we discuss the

moduli space of the effective theories on non-Kähler manifolds, introducing the generalized

half-flat manifolds, which we will use in the following, and their differential algebra. In

section 3 we focus on the common sector of string theory and especially on heterotic

compactifications deriving the new attractor equations for this case. First we will deal

with the case of a single size modulus, showing the analogy with the IIB case and then give

general expressions of the attractor equations for the generic case. In this same section we

will show how the attractor points, for the case of vanishing 4-dimensional cosmological

constant, lead to the restriction to special-hermitian manifolds. Finally, in section 4 we

comment on the extensions to the case of type II strings.

2. Preliminaries

In this section we introduce the necessary ingredients to describe the moduli space of

non-Kähler compactifications.

Let us start with a lightning review of the elements related to the group structures of the

tangent bundle of the compactification manifold, as these are very useful to discuss the non-

Kähler backgrounds. When the Calabi-Yau condition is relaxed, because of the presence

of form fluxes, the compactifying manifold no longer has an SU(3) holonomy, but rather it

shows an SU(3) structure. This means that there are still an almost complex structure J

and a holomorphic form Ω, which are globally defined, but they are not closed in general,

i.e. dJ 6= 0 and dΩ 6= 0. The SU(3) structures are classified by the “intrinsic torsion” τ that

one has to add to the Levi-Civita connection ∇, so that ∇(τ)J = 0 = ∇(τ)Ω. This torsion

is completely determined by the exterior differentiation of the globally defined forms

dĴ =
3

4
i
(
W1Ω̂ − W 1Ω̂

)
+ Ĵ ∧ W4 + W3, (2.1)

dΩ̂ = W1Ĵ ∧ Ĵ + Ĵ ∧ W2 + Ω̂ ∧ W 5, (2.2)

where Ĵ ∧ W3 = Ω̂ ∧ W3 = Ĵ ∧ Ĵ ∧ W2 = 0 and Ĵ and Ω̂ are the normalized versions

||Ω̂|| = ||Ĵ || = 1 of the globally defined forms J and Ω. The Calabi-Yau condition is given

by the vanishing of all the torsion classes W1 = · · · = W5 = 0. Since in the following we

will be mainly concerned with the compactifications of the heterotic theory, we point out

that the allowed torsion classes for the common sector is given by [16]

W1 = W2 = 0, W3 = 2 ? H0, 2W4 = −W5 = ∂∆, (2.3)

where H0 is the primitive part of the flux and ∆ is the warp factor. The latter is also

proportional to the dilaton d∆ = dφ.

In [15, 17] it was shown that for compactifications on SU(3) structure manifolds Y6,

the space of metric deformations δgmn is related to the structure deformations δJ and
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δΩ in a fashion similar to the one of Calabi-Yau compactifications [18]. In general, δJ

and δΩ contain more degrees of freedom than the metric as the structure deformations

parametrize GL(6,R)
SU(3) , while the metric deformations are elements of GL(6,R)

SO(6) . However,

these extra deformations can be removed by the use of local symmetries [15]. In addition,

the reduction to an ordinary 4-dimensional theory without massive gravitino multiplets

implies the need for a truncation, where all the deformations that transform as triplets

of SU(3) are removed [15]. Once this is done, the moduli space of the complex structure

moduli and of the Kähler ones (where the complex moduli are obtained by considering also

the degrees of freedom from the NS 2-form B) parametrizes the special Kähler manifold

MTOT = MΩ ⊗MJ , (2.4)

with Kähler potentials given by

KJ = − log i〈e−Jc , e−Jc〉 = − log
4

3

∫
J ∧ J ∧ J (2.5)

KΩ = − log i〈Ω,Ω〉 = − log i

∫
Ω ∧ Ω, (2.6)

where Jc = B + iJ and the brackets 〈, 〉 denote the Mukai pairing:

〈ψ+, χ+〉 = ψ+
0 ∧ χ+

6 − ψ+
2 ∧ χ+

4 + ψ+
4 ∧ χ+

2 − ψ+
6 ∧ χ+

0 , (2.7)

〈ψ−, χ−〉 = −ψ−
1 ∧ χ−

5 + ψ−
3 ∧ χ−

3 − ψ−
5 ∧ χ−

1 . (2.8)

Here, the ± superscript refers to the grade of the ψ±, χ± components in Λeven|oddT ∗Y6.

From these relations we can infer that e−Jc and Ω are the symplectic sections of the Hodge

bundle of the moduli spaces of the Kähler and complex structure deformations respectively.

In the same way we can introduce covariantly holomorphic sections V corresponding to the

normalized forms

V = (e−
bJc ⊗ Ω̂) = e(KJ +KΩ)/2(e−Jc ⊗ Ω). (2.9)

These sections obey

〈V,V〉 = −i, (2.10)

where the brackets are now the symplectic product of the sections or the Mukai pairing

according to the representation of V.

For Calabi-Yau compactifications the T and U moduli correspond to the expansion of

e−Jc ⊗ Ω on the basis of harmonic forms. In detail:

e−Jc = X0(T ) + Xi(T )ωi − Fi(T )ω̃i − F0(T ) ? 1, (2.11)

Ω = XΛ(U)αΛ − FΛ(U)βΛ, (2.12)

where (αΛ, βΛ) are a base for the 3-forms and 1, ωi, ω̃
i, ?1 are a base for the 0-,2-,4- and 6-

forms. Obviously in this case we can no longer use the harmonic forms as we are expecting

that dJ and/or dΩ may no longer be closed.

Following [15] we can still consider an expansion over a basis of 2-,3- and 4-forms that

correspond to a truncation of the space of forms to a finite-dimensional subspace. With
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some reasonable assumptions, the spectrum of such forms gets restricted to Λ0,2,4,6, where

Λ0 is the constant function, Λ6 is the volume form, and Λ2, Λ4 are spanned by the basis

ωi, ω̃i, with the same dimension beven, and Λ3, of dimension 2(bodd + 1), is spanned by

(αΛ, βΛ) that form a symplectic set of basis forms. These forms satisfy the completeness

relations

〈αΛ, βΣ〉 = −〈βΣ, αΛ〉 = δΣ
Λ , 〈αΛ, αΣ〉 = 0 = 〈βΛ, βΣ〉; (2.13)

introducing ωI = (1, ωi), ω̃I = (?1, ω̃i) so that also (ωI , ω̃
I) form a symplectic basis1, we

obtain

〈ωI , ω̃
J〉 = −〈ω̃J , ωI〉 = δJ

I . (2.14)

In [15] the further restriction that Λ1 = Λ5 = 0 was imposed, justified by the request that

no SU(3) triplets appear in the reduction. This is expected when the warp factor function

is constant. In this case, the supersymmetric backgrounds no longer contain such forms

in the definition of the intrinsic torsion (2.3). However, on a more general ground, we can

note that also in the case when the warp factor is non-trivial over the internal manifold,

the moduli are always defined through J and Ω and not through the normalised forms

Ĵ and Ω̂. For this reason we can always define a holomorphic form Ω = ||Ω||Ω̂ = e∆Ω̂,

with dΩ = 0 (following from W5 = ∂ log ||Ω|| in the heterotic case), or at least generically

without triplets in the exterior differentiation. The Kähler potential generated by Ω′ = e∆Ω

is KΩ′ = KΩ − 2∆. In the same way, a rescaled J can be defined that does not give rise to

triplets. It is useful that, since W4 and W5 transform in the vector representation of SU(3)

and we do not expect globally defined vector fields for this type of manifolds (otherwise the

structure would be further reduced), we expect these torsion classes to be proportional to

the derivative of the dilaton/axion and/or to the warp factor of the background. We can

therefore assume that the moduli space of the SU(3) structure manifolds that appear in the

non-Kähler compactifications are given by spaces with Λ spanned by 1, ωi, αΛ, βΛ, ω̃i, ?1,

where these forms satisfy the orthogonality relations2

ωi ∧ αΛ = 0 = ωi ∧ βΛ, (2.15)

and the differential conditions [19, 20, 15]

dωi = mΛ
i αΛ − eiΛβΛ, (2.16)

dω̃i = 0, (2.17)

dαΛ = eiΛω̃i, (2.18)

dβΛ = mΛ
i ω̃i. (2.19)

The charges Vi = (mΛ
i , eiΛ) form a symplectic vector satisfying the constraint

〈Vi, Vj〉 = 0, (2.20)

1Strictly speaking, the symplectic basis is really spanned by (λωI , µω̃I), where λ, µ are anticommuting

numbers [18] and in the symplectic product one should also perform an integration over dλdµ. However,

using the Mukai pairing one gets the appropriate signs and relations, also using 〈ωI , ωJ〉 = 0.
2This translates to the condition J ∧ Ω = 0 for any choice of J and Ω in Λ2 and Λ3, respectively.

– 6 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
1

as necessary for the exterior differential to be nilpotent. We will see later that these charges

can be read as “geometric fluxes” that, in perfect analogy with the ordinary form fluxes,

give origin to the electric and magnetic charges of the effective theory. These manifolds

clearly contain the half-flat manifolds [21], defined by

ImW1 = ImW2 = W4 = W5 = 0. (2.21)

They also include the generalised half flat manifolds, admitting all torsion classes to be

non-vanishing, but W4 = W5 = 0 [19, 20].

From the previous discussion we can however argue that this structure can be obtained

in a more general setup, where Ĵ and Ω̂ do not have vanishing W4 and/or W5, provided the

Kähler potential for the moduli space is redefined in a proper way. This is also supported by

the comments in [22], where it is shown that a non-trivial warp factor does not change the

superpotential of the effective theory (that is defined through J and Ω), but rather on the

Kähler potential, which is crucially related to the norm of the structure forms (2.5), (2.6).

Coming back to the case of the heterotic strings, we can see how the moduli space for

reductions on SU(3) structure manifolds is larger than that of the supersymmetric solutions.

In the case of constant dilaton and warp factor, these are indeed special-hermitian manifolds

with W1 = W2 = W4 = W5 = 0 [16], more constrained than the generic half-flat ones for

which W4 = W5 = 0. We can then understand how the superpotential of the effective

theory can really fix some of the original moduli at the supersymmetric point, in perfect

analogy with the IIB case.

3. Heterotic attractors

Let us now come to the realization of the new attractor mechanism, in the case of the

common sector of string theory and in particular of the heterotic theory. We mainly focus

on the latter because compactifications on an SU(3) structure manifold give naturally

N = 1 theories in 4 dimensions for the heterotic theory, without the need of orientifolds as

in type II. In this case the role of the sources of negative energy is played by the appearance

of the higher-derivative terms in the low-energy lagrangian rather than O-planes.

As a first step let us recall here the basic ingredients. For the sake of simplicity we

focus on the case of trivial warp factor as well as 10-dimensional dilaton, therefore following

the example of the previous section. We then consider compactifications on generalized

half-flat manifolds, satisfying the relations (2.16) and (2.19). The only form flux that can

be turned on is the NS 3-form

H = pΛαΛ − qΛβΛ. (3.1)

Since the H-Bianchi identity is non-trivial for the heterotic theory, we have to be careful

with the extra constraints on the 3-forms α and β that come from

dH = ω̃i
(
pΛeiΛ − qΛmΛ

i

)
= ω̃i (fi − ri) =

α′

4
(trF ∧ F − trR ∧ R) . (3.2)

We will not look at the effects of the gauge moduli, but only focus on the geometric ones.

Also, we do not look at the specific form of ri and fi as they do not affect the attractor
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mechanism for the definition of the critical points, but keep in mind that extra constraints

on the fluxes may arise [19]. For the standard embedding, or in the case of the common

sector of the type I/II theories the right-hand side of (3.2) is vanishing, and then the charges

have to fulfill the relation

pΛeiΛ − qΛmΛ
i = 0. (3.3)

The superpotential is [23 – 25]

W =

∫
(H + dJc) ∧ Ω. (3.4)

Using the previous relations, this reads

W = qΛXΛ(U) − pΛFΛ(U) + T i
(
mΛ

i FΛ − XΛeiΛ

)
, (3.5)

where T i are the Kähler moduli related to Jc according to (2.11), and Xi/X0 ≡ T i.

Introducing the general definition for the “geometric fluxes”

Fi ≡ dωi = mΛ
i αΛ − eiΛβΛ, (3.6)

we can rewrite (3.4) as

W =

∫ (
H − T iFi

)
∧ Ω. (3.7)

3.1 One Kähler modulus

The case of a single size modulus T i = T 1 = T (or when just one geometric flux is turned

on) reduces the previous superpotential to a form very similar to that of type IIB reductions

on a Calabi-Yau plus fluxes:

Whet =

∫
(H − TF ) ∧ Ω, (3.8)

WIIB =

∫
(F − τH) ∧ Ω, (3.9)

or, using the complex-structure sections:

Whet =
(
eNS
Λ − Tegeom

Λ

)
XΛ −

(
mΛ

NS − TmΛ
RR

)
FΛ, (3.10)

WIIB =
(
eRR
Λ − τeNS

Λ

)
XΛ −

(
mΛ

RR − τmΛ
NS

)
FΛ. (3.11)

In these expressions, the role of the IIB NS flux is taken by the geometric flux of the

heterotic reductions, the IIB RR flux is replaced by the NS 3-form heterotic flux, and

the complex dilaton τ is replaced by the complexified volume modulus T . This clearly

follows the pattern of duality relations between type IIB compactifications in the presence

of orientifolds and the heterotic theory, through F-theory. This relation, known for the

case of Calabi-Yau compactifications, has recently been studied and extended to the case

of non-trivial fluxes in [26 – 29]. Furthermore, it is clear that, while in type IIB reductions

the superpotential (3.9) allows all the complex structure moduli to be fixed as well as the
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dilaton τ , but not the volume, the heterotic potential (3.8) fixes all the complex structure

moduli and the volume, but not the dilaton.

For this case, where the analogy is clear, we can further see that the minimization of

Whet gives, for the complexified flux Ghet = H −TF , the same conditions as WIIB imposes

on GIIB, i.e. it is restricted to a (2,1) form and primitive for supersymmetric Minkowski

vacua and to (2,1)+(0,3) forms for supersymmetric AdS vacua (when neglecting the Kähler

moduli in type IIB). We can finally argue that this implies the right vacuum condition

for supersymmetric heterotic backgrounds with fluxes [12, 16]. Let us see this for the

Minkowski vacua. The internal manifold must be complex as dJ (3,0) = dJ (0,3) = 0 = dΩ.

Moreover, G
(1,2)
het = 0 implies (for the choice T = i) that

H(1,2) + i∂J = 0,

where we used the fact that d = ∂ + ∂̄ for a complex manifold. Since H is real we finally

obtain

H = i
(
∂ − ∂

)
J, (3.12)

which is the condition in [12]. It should be noted that to exhibit non-trivial solutions,

the charges cannot be arbitrary, as shown by the previous equation, but the geometrical

fluxes must be related to those coming from the 3-form. This happens because the choice

of independent sections XΛ imposes that the charges be not independent when trying to

achieve the W = 0 condition.

It is now also possible to use once more this analogy to extend the new attractor mech-

anism to this instance of flux compactifications. Following [10], we can define generalized

symplectic sections

Π = (V,−TV) , (3.13)

where now V = (LΛ,MΛ) are only the symplectic sections of the complex structure moduli

space. This doublet of sections couples to the doublet of fluxes

F = (H3, F3) (3.14)

to define the central charge

Z = eK/2〈F,Π〉. (3.15)

Here F and Π are matrices in SL(2, Z)⊗ Sp(bodd + 1, R) and the symplectic pairing 〈, 〉

also contains an SL(2, Z) invariant product of the doublets. In type IIB this coupling is

justified by the SL(2, Z) symmetry of the theory, and by the fact that τ transforms in the

appropriate way. On the other hand, in the case of the heterotic theory, the justification

for such doubling of the symplectic sections is due to the appearance of the Kähler modulus

T . The pairing (3.15) of the IIB theory becomes a double symplectic product of the fluxes

that transform in both representations of the respective symplectic sections. In the same

way as [10], we can therefore obtain an algebraic equation for the critical points that is

formally the supersymmetric attractor equation
(

QF

QH

)
=

(
2Re(Z̄V)

2Re(Z̄TV)

)
+

(
2Re(gαβ̄(KT )−1 DT Dβ̄Z̄ DαV)

2Re(gαβ̄(KT )−1 DT Dβ̄Z̄ T̄DαV)

)
. (3.16)
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In the IIB case, this formula also follows from the reality of the 4-form flux containing

both the RR and NS fluxes in F-theory and its expansion on the basis of 4-forms of the

Calabi-Yau 4-fold. Here we can use the same uplift, but with a different interpretation.

This equation was obtained from the general expansion upon using the supersymmetry

condition DαZ = DT Z = 0. From the same general expansion one could obtain also the

non-supersymmetric critical points by imposing the more general conditions deriving from

the minimization of the full potential.

Thinking about the expansion in terms of the Kähler moduli in (3.16) and looking

at the covariantly holomorphic sections, we can see that the charges associated to the

geometric fluxes (eiΛ,mΛ
i ) can be put together with the 3-form flux charges (mΛ

0 , e0Λ) =

(pΛ, qΛ). Together, they become part of the same symplectic vector in the Kähler sector

(mI , eI). We can therefore argue that the generic charge matrix Q is doubly symplectic

Q =

(
m̃IΛ mΛ

I

ẽI
Λ eIΛ

)
. (3.17)

In the current example, it is clear that only the first column is different from zero as

ẽ = 0 = m̃. Moreover, for the case of a single Kähler modulus, each row in (3.17) transforms

generically in Sp(4,R), but the lower index I is acted upon only by the SL(2, R) subgroup,

as expected from the previous discussion. We can therefore think about the charges as a

matrix to be generically coupled to the product of symplectic sections:

V =

(
LI(T )LΛ(U) MI(T )LΛ(U)

LI(T )MΛ(U) MI(T )MΛ(U)

)
. (3.18)

We recall that the ordinary fluxes are quantized, and therefore e and m are generically

integers in the appropriate units. On the other hand, the geometrical fluxes are not usually

thought to be quantized; the corresponding charges can therefore have any arbitrary real

value. It is however clear that, as in the previous example, the geometrical fluxes are often

related to the ordinary ones by duality relations, so that we expect that also the geometric

charges to be quantized.

3.2 General case

An alternative rewriting of the results of the previous section comes by using the special-

Kähler properties of the scalar manifold and their formulation in terms of the normalized

forms e−Ĵ and Ω̂. Using the definition (2.9) for the symplectic sections V, we can build the

corresponding charges

Q = ?1 ⊗ H + ω̂ ⊗ F, (3.19)

giving a form representation to (3.17) for the case of one volume modulus. Here ω̃ is such

that
∫

ω∧ ω̃ = 1, for Jc = Tω. In this way the central charge (and hence the superpotential

W = e−K/2Z) becomes

Z = 〈Q,V〉, (3.20)

where the brackets denote a double Mukai pairing. A similar proposal, for the generic

superpotential coming from type II compactifications on generalized Calabi-Yau manifolds,
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was put forward in [30], where also matrix charges were considered (see also [31]). The result

of [30] was obtained by computing the non-perturbative contributions to the superpotential,

using F-theory uplifts. Since our definition involves only the perturbative fluxes instead,

we can be confident of the fact that this structure will not be spoiled by non-perturbative

corrections. The expansion of the double-symplectic section V corresponds to (3.18)

V =

(
LI(T )ω̃I ⊗ LΛ(U)αΛ MI(T )ωI ⊗ LΛ(U)αΛ

LI(T )ω̃I ⊗ MΛ(U)βΛ MI(T )ωI ⊗ MΛ(U)βΛ

)
, (3.21)

and the corresponding expansion of the charges (3.19) on the same basis gives the attractor

equation (3.16).

Using this formulation, it is possible to extend these results to the general case of an

arbitrary number of Kähler moduli. When there are more active moduli, and therefore

more geometrical fluxes, the generic charge matrix becomes

Q = ?1 ⊗ H + ω̃i ⊗ Fi, (3.22)

so that we obtain once more the right central charge from (3.20).

It is again clear that the matrix Q does not contain elements in Λ2 and Λ0 because of

the structure of the generalized half-flat manifolds and of the form-fluxes allowed by the

theory, as there is only a 3-form H. We will see that this may change in other theories.

Using this generic expansion in the basis of Λfin we can now write the general new attractor

equation for flux vacua of the common sector of string theory. This reads

Q = −2Im
(
ZV + gαβ̄ e−

bJc ⊗ DαΩ̂ Dβ̄Z + gī Die
− bJc ⊗ Ω̂ D̄Z

+gαβ̄gī Die
− bJc ⊗ DαΩ̂ D̄Dβ̄Z

)
,

(3.23)

where the critical point condition for a supersymmetric vacuum DZ = 0, or Minkowski

DZ = Z = 0, or generic non-supersymmetric vacuum DV = 0 has to be inserted. In the

special case of supersymmetric Minkowski vacua this simplifies to

Q = −2 Im
(
gαβ̄gī Die

− bJc ⊗ DαΩ̂ D̄Dβ̄Z
)

, (3.24)

which implies once more that the geometrical fluxes contain only a primitive dJ (2,1)+(1,2),

therefore giving as attracting manifolds the special-hermitian ones. This can be seen from

the fact that Die
− bJc ⊗ DαΩ̂ selects from the charges the elements in DiMjω̃

j ⊗ χ
(2,1)
α and

DiM0 ? 1 ⊗ χ
(2,1)
α . It should be recalled that only for vanishing cosmological constant are

these real points in the landscape of flux vacua for the common sector. The full Kähler

potential depends also on the dilaton S, whereas the superpotential does not. This means

that the conditions for a critical point with respect to S give DSW = KSW = 0. The

same is true also for the type IIB case, where the role of the dilaton is taken by the volume

modulus. It is indeed known that, without non-perturbative effects, the IIB potential is

of the no-scale form. In any case, understanding the general condition may be of some

use for KKLT-like scenarios and as preparation for the IIA case, where this is no longer a

problem and the superpotential can depend on all the moduli. We notice again that only

some of the charges were non-trivial so far. We will see that, without non-perturbative

contributions, we cannot produce all non-trivial entries.
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4. Type II non-Kähler attractors

Now that we have seen how the new attractor mechanism works for the case of the het-

erotic string, we give some comments on how this should be further extended to the case

of type II compactifications on non-Kähler manifolds with O-planes. As we have discussed

in the introduction, the justification for this type of backgrounds is given by the exten-

sion of mirror symmetry to the flux case or, more generally, by using T-duality on flux

backgrounds.

When type II theories are compactified on an SU(3) structure manifold, we get an

N = 2 effective theory [15]. In order to reduce to an N = 1 lagrangian we must add

orientifold projections. This, however, means that the spectrum corresponding to this

compactification is truncated and may affect the special-Kähler structure of the moduli

space. In the case of type IIA with orientifolds, we can see that there is a relic of the

original special-Kähler structure in the size deformation part of the moduli space as the

scalar fields in this sector are described by the components of Jc = B + iJ that survive the

projections. On the other hand, where the complex structure moduli are concerned, the

orientifold projections remove the real parts of the complex moduli. However, these are

replaced by the surviving moduli coming from the RR 3-form C. This sector of the moduli

space can now be described by the new “holomorphic form”

Ωc = C3 + ie−ΦImΩ. (4.1)

The Kähler potential of the moduli space is therefore still given by expressions that formally

resemble the ones in (2.5) and (2.6), but now replaced by the new sections

KJ = − log i〈e−Jc , e−Jc〉, KΩ = − log i〈Ωc,Ωc〉. (4.2)

In addition, we can now have non-trivial RR 2- and 4-form fluxes. These fluxes can be

expanded in the same basis as before

g2 = ẽi
RRωi, (4.3)

f4 = eRR
i ω̃i, (4.4)

where the charges are constrained by the closure of the Bianchi identities dg2 = 0 and

df4 = H ∧ f2 = 0. These constraints read [15]

ẽi
RReiΛ = 0, ẽi

RRmΛ
i = 0. (4.5)

The equations of motion give further eRR
i gij(U)ejΛ = 0 = eRR

i gij(U)mΛ
j . The charges

in (4.3)–(4.4) are electric-magnetic duals under symplectic rotations of the Kähler defor-

mations part, labelled by the indices I = (0, i), and therefore constitute part of a symplectic

vector (ẽI , eI). They have the same properties for the electric-magnetic transformations of

the complex-structure deformations and this is why we call them both with the same letter

e. We will see that this is also consistent with our previous definition (3.17).

– 12 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
1

The superpotential of the effective theory has been obtained in various ways [14, 32,

15, 33, 34], and it reads

W =

∫
Jc ∧ dΩc −

∫
H ∧ Ωc +

1

2

∫
Jc ∧ Jc ∧ g2 +

∫
f4 ∧ Jc, (4.6)

where, once the first term is integrated by parts, we recover the superpotential of the

common sector from the first two terms.

At this stage we can extend the arguments of the previous section by enlarging the

charge matrix

Q = QNS + QRR, (4.7)

where QNS is given by (3.22), and QRR can now be defined as3

QRR = f4 ⊗ Ξ + g2 ⊗ Ξ = ẽi
RRωi ⊗ Ξ + eRR

i ω̃i ⊗ Ξ, (4.8)

where Ξ = eKΩ/2i(Ω̂ − Ω̂) is a real 3-form chosen so that its contribution to the super-

potential is trivial. However, we expect that also (ẽI
RR, eRR

I ) become part of a symplectic

vector in Λ. For this to be the case, we have to choose Ξ = β0, so that the central charge

dependence on the complex structure moduli is only through L0, that can be fixed to be

L0 = eKΩ/2, in a way compatible with the superpotential presented in [15]. Once more,

the central charge is obtained by the symplectic contraction

Z = 〈Q,V〉.

In components, the RR part of the superpotential reads

W = Xi(T )eRR
i − ẽi

RRFi(T ). (4.9)

Finally, we can expand again the charge matrix Q in terms of the projections on the various

sectors of Λeven⊗Λodd as before, although now the charge matrix has additional non-trivial

entries

Q =

(
0 mΛ

I

(ẽI
0, 0) eIΛ

)
, (4.10)

and the eIΛ now include both the NS and RR charges. It has been noted that the conditions

on the fluxes, here following from the differential algebra, have an interpretation in the

effective field theory in terms of gauging conditions [20, 35, 15]. It would be interesting

to spell the exact conditions on the charge matrix (as in equations (2.20), (3.3) and (4.5)

presented above) independently from the structure of the flux compactifications presented

here.

In an analogous fashion we can argue for the extension of this mechanism to the case

of IIB compactifications on non-Kähler manifolds. For this case we have to add

QIIB
RR = ?1 ⊗ FRR. (4.11)

3The vector of RR charges can be completed to a full symplectic vector in the I indices by the 0- and

6-form fluxes that appear for instance in massive type IIA. These are expanded as g0 = ẽ0

RR, g6 = eRR

0 ? 1.
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In this case, as is evident from the additional SL(2, Z) symmetry of the theory and from the

fact that the complex dilaton appears explicitly in the superpotential, the Q and V matrices

must be further enlarged as in [10], where the new sections form explicit doublets of this

symmetry. However, once this technical trick is implemented, the attractor equations are

obtained in the same way as presented in the previous sections.
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